bookmark_borderTransformers Aren’t Turing-complete, But a Good Disguise Is All You Need

Transformers are a neural network architecture. They are behind some of the most successful large language models (LLMs) we see today, like GPT-3, PaLM, BARD, and GPT-4. I have seen several papers claiming that transformers are Turing-complete, meaning that they can be used to simulate any computer program.

But transformer architectures are not Turing-complete. They cannot simulate computer programs. The papers that claim otherwise are making a conceptual error. Transformers have been impressive and extraordinary as tools but we need to be honest about what they can do and about the challenges that lie ahead of us on the path toward true artificial general intelligence.

Continue reading “Transformers Aren’t Turing-complete, But a Good Disguise Is All You Need”

bookmark_borderIt’s Not Intelligent If It Always Halts: A Critical Perspective on Current Approaches to AGI

Imagine a conversation with one of these newly released AI chatbots. You ask it it to solve a tricky math problem. It responds with “That seems kind of hard. Give me some time to think.”. After a few minutes it comes back with “I haven’t solve it yet. And I am not sure I can. Would you like me to continue working on it?”. Another few minutes pass and then it comes back with “Aha! I figured it out!” and it proceeds to explain a neat and creative solution.

This scenario can never occur with PaLM, BARD, GPT-4, or any of the other transformer-based large language models that are thought to be on the path to general intelligence. In all of these models, each word in the machine’s response is produced in a fixed amount of time. The model cannot go away and “think” for a while. This is one of the reasons why I believe a solely transformer-based model can never be “intelligent”. (If you disagree with my characterization of transformers here, see section 4 and also this post).

Summary: I argue here, that intelligence requires the ability to explore “trains of thought” that are potentially never-ending. One cannot know a priori if a certain train of thought will lead to a solution or if it is futile. The only way to find out is to actually explore. And this type of exploration comes with the risk of never knowing if you are on the path to a solution or if your current path will go on forever. Intelligence involves problem-solving, and problem-solving requires arbitrary amounts of time. If a computer program is bound to finish quickly by virtue of its architecture, it cannot possibly be capable of general problem-solving.

In the summary paragraph above, I appealed to a number of intuitive notions (e.g. “train of thought”, or “exploration”, or “problem-solving”). In order to make my argument rigorous, I have to first introduce a few concepts rooted in classical theory of computation. In section 1, I will introduce three types of computer programs. In section 2, I describe what an unintelligent problem-solver can look like. In section 3, I describe what is needed to make the unintelligent problem-solver intelligent. In section 4, I explain why transformers can never be general problem-solvers. In section 5, I briefly discuss what I think needs to be done to address this problem.

bookmark_borderBreaking Free from Neural Networks and Dynamical Systems

This blog post is written as a dialogue between two imaginary characters, one of them representing myself (H) and the other a stubborn straw man (S). It is broken into four parts: the dogma, the insight, the decoy, and the clues. If you do not feel like reading the whole thing, you can skip to part 4; it contains a summary of the other parts.

[image adapted from Song et al. 2016]
Continue reading “Breaking Free from Neural Networks and Dynamical Systems”

bookmark_borderCan a finite physical device be Turing-equivalent?

If you believe in the following, I am going to try to change your mind:

“Turing machines aren’t realistic. They need infinite memory so they can’t be implemented. Any real computing device is limited in its memory capacity and, therefore, equivalent to a finite state machine.”

Cartoon of a Turing Machine by Tom Dunne 2002
Cartoon of a Turing Machine by Tom Dunne, 2002

This is a fairly commonly held view. I used to believe in it myself, but had always found it deeply unsatisfying. After all, modern-day computers have limited memory capacity but closely resemble Turing machines. And Turing’s abstract formulation arguably led to the digital revolution of the 20th century. How, then, can the Turing machine be a physically irrelevant mathematical abstraction? If all of our computers and devices are of the weaker class of computers, namely, finite state machines, why do they have to look so much like Turing machines?

It is important to clarify this, especially for neuroscience and computational biology. If we think of Turing-equivalence as this abstract level of computation that is impossible to physically achieve, then we block out classical insights from the theory of computation and cannot even begin to ask the right questions. (I recently wrote a manuscript asking the question “where is life’s Turing-equivalent computer?” and showed that a set of plausible molecular operations on RNA molecules is sufficient to achieve Turing-equivalent computation in biology).

It took a good amount of reading and thinking to finally understand the meaning of Turing-equivalence. I will explain what I believe to be the only consistent way of looking at this issue. Here is the short version:

When we say Turing machines require “unbounded memory”, what we mean is that memory cannot be bounded by the systems descriptor, not that it cannot be bounded by other things such as the laws of physics or resource constraints. Turing-equivalence only requires a system in which memory usage grows, not one in which memory is infinite.

Below I explain precisely what all that means. I will try to convince you that this is the only consistent way of looking at this and that Turing, himself, shared this perspective.

Continue reading “Can a finite physical device be Turing-equivalent?”